Classical limit of bosons in phase space
A.O. Bolivar
Physica A: Statistical Mechanics and its Applications, 2002, vol. 315, issue 3, 601-615
Abstract:
By means of a novel classical limiting method we derive classical Liouville equations for particles with spin 0 and 1 from the Klein–Gordon and the Duffin–Kemmer–Petiau equations in relativistic quantum phase space within a geometric algebra structure.
Keywords: Classical limit; Relativistic quantum phase space; Geometric algebra; Bosonic particles (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102010002
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:315:y:2002:i:3:p:601-615
DOI: 10.1016/S0378-4371(02)01000-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().