Relaxation to steady states and dynamical exponents in deposition models
F.D.A. Aarão Reis
Physica A: Statistical Mechanics and its Applications, 2002, vol. 316, issue 1, 250-258
Abstract:
Considering some deposition models with limited mobility, we show that the typical decay of the interface width to its saturation value is exponential, which defines the crossover or saturation time τ. We present a method to calculate a characteristic time τ0 proportional to τ and estimate the dynamical exponent z. In one-dimensional substrates of lengths L⩽2048, the method is applied to the Family model, the restricted solid-on-solid (RSOS) model and the ballistic deposition. Effective exponents zL converge to asymptotic values consistent with the corresponding continuum theories. For the two-dimensional Family model, the expected dynamic scaling hypothesis suggests a particular definition of τ0 that leads to z=2, improving previous calculations based on data collapse methods. For the two-dimensional RSOS model, we obtain z≈1.6 and α<0.4, in agreement with recent large-scale simulations.
Keywords: Growth models; Thin films; Universality classes; Dynamical exponent; Relaxation (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102010294
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:316:y:2002:i:1:p:250-258
DOI: 10.1016/S0378-4371(02)01029-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().