Football goal distributions and extremal statistics
J Greenhough,
P.c Birch,
S.c Chapman and
G Rowlands
Physica A: Statistical Mechanics and its Applications, 2002, vol. 316, issue 1, 615-624
Abstract:
We analyse the distributions of the number of goals scored by home teams, away teams, and the total scored in the match, in domestic football games from 169 countries between 1999 and 2001. The probability density functions (PDFs) of goals scored are too heavy-tailed to be fitted over their entire ranges by Poisson or negative binomial distributions which would be expected for uncorrelated processes. Log-normal distributions cannot include zero scores and here we find that the PDFs are consistent with those arising from extremal statistics. In addition, we show that it is sufficient to model English top division and FA Cup matches in the seasons of 1970/71–2000/01 on Poisson or negative binomial distributions, as reported in analyses of earlier seasons, and that these are not consistent with extremal statistics.
Keywords: Football; Extremal statistics (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102010300
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:316:y:2002:i:1:p:615-624
DOI: 10.1016/S0378-4371(02)01030-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().