Expansion exponents for nonequilibrium systems
V.I. Yukalov
Physica A: Statistical Mechanics and its Applications, 2003, vol. 320, issue C, 149-168
Abstract:
Local expansion exponents for nonequilibrium dynamical systems, described by partial differential equations, are introduced. These exponents show whether the system phase volume expands, contracts, or is conserved in time. The ways of calculating the exponents are discussed. The principle of minimal expansion provides the basis for treating the problem of pattern selection. The exponents are also defined for stochastic dynamical systems. The analysis of the expansion-exponent behavior for quasi-isolated systems results in the formulation of two other principles: The principle of asymptotic expansion tells that the phase volumes of quasi-isolated systems expand at asymptotically large times. The principle of time irreversibility follows from the asymptotic phase expansion, since the direction of time arrow can be defined by the asymptotic expansion of phase volume.
Keywords: Nonequilibrium processes; Stochastic systems; Fluctuation phenomena; Irreversible processes (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710201590X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:320:y:2003:i:c:p:149-168
DOI: 10.1016/S0378-4371(02)01590-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().