Extension of dynamics of granular flow methodology to cell biology
A Kummer and
R Ocone
Physica A: Statistical Mechanics and its Applications, 2003, vol. 321, issue 3, 587-597
Abstract:
In a previous paper (J. Non-Newtonian Fluid Mech. 76 (1998) 5), the analogy between the methodology typical of the dynamics of polymeric liquids and those used in granular flow theory was investigated. It was shown that such a methodology could be successfully extended to granular flow, and then it was speculated on the possibility of extending it to diverse areas. In this paper two important conclusions are reached. Firstly we show that the methodology behind the statistical theories (which starting from the microstructural element eventually leads to the formulation of constitutive equations (AICHE Symposium Series, Vol. 93, 1997, p. 103)) can be extended to an apparently completely different field, namely cell biology. We then show that classical thermodynamics, as applied to epigenetic systems, presents limitations which can be overcome following an axiomatic thermodynamic route (J. Rheol. 37 (1993) 727).
Keywords: Granular flow; Biological systems; Statistical theory (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102015960
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:321:y:2003:i:3:p:587-597
DOI: 10.1016/S0378-4371(02)01596-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().