Optimization and self-organized criticality in a magnetic system
Roberto N. Onody and
Paulo A. de Castro
Physica A: Statistical Mechanics and its Applications, 2003, vol. 322, issue C, 247-255
Abstract:
We propose a kind of Bak–Sneppen dynamics as a general optimization technique to treat magnetic systems. The resulting dynamics shows self-organized criticality with power-law scaling of the spatial and temporal correlations. An alternative method of the extremal optimization (EO) is also analyzed here. We provided a numerical confirmation that, for any possible value of its free parameter τ, the EO dynamics exhibits a non-critical behavior with an infinite spatial range and exponential decay of the avalanches. Using the chiral clock model as our test system, we compare the efficiency of the two dynamics with regard to their abilities to find the system's ground state.
Keywords: Self-organized criticality; Optimization; Bak–Sneppen model; Chiral clock model (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102018162
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:322:y:2003:i:c:p:247-255
DOI: 10.1016/S0378-4371(02)01816-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().