Model of MT and MST areas using an autoencoder
Katsuki Katayama,
Masataka Ando and
Tsuyoshi Horiguchi
Physica A: Statistical Mechanics and its Applications, 2003, vol. 322, issue C, 531-545
Abstract:
We propose a model for a system with middle temporal neurons and medial superior temporal (MST) neurons by using a three-layered autoencoder. Noise effect is taken into account by using the framework of statistical physics. We define a cost function of the autoencoder, from which a learning rule is derived by a gradient descent method, within a mean-field approximation. We find a pair of values of two noise levels at which a minimum value of the cost function is attained. We investigate response properties of the MST neurons to optical flows for various types of motion at the pair of optimal values of two noise levels. We obtain that the response properties of the MST neurons are similar to those obtained from neurophysiological experiments.
Keywords: Neural network; MT neurons; MST neurons; Optical flow; Autoencoder; Learning; Mean-field approximation (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437102018034
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:322:y:2003:i:c:p:531-545
DOI: 10.1016/S0378-4371(02)01803-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().