EconPapers    
Economics at your fingertips  
 

The branched polymer growth model revisited

Ubiraci P.C. Neves, André L. Botelho and Roberto N. Onody

Physica A: Statistical Mechanics and its Applications, 2003, vol. 324, issue 3, 455-468

Abstract: The branched polymer growth model (BPGM) has been employed to study the kinetic growth of ramified polymers in the presence of impurities. In this article, the BPGM is revisited on the square lattice and a subtle modification in its dynamics is proposed in order to adapt it to a scenario closer to reality and experimentation. This new version of the model is denominated the adapted branched polymer growth model (ABPGM). It is shown that the ABPGM preserves the functionalities of the monomers and so recovers the branching probability b as an input parameter which effectively controls the relative incidence of bifurcations. The critical locus separating infinite from finite growth regimes of the ABPGM is obtained in the (b,c) space (where c is the impurity concentration). Unlike the original model, the phase diagram of the ABPGM exhibits a peculiar reentrance.

Keywords: Branched polymer; Critical transition; Reentrant phase (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103000700
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:324:y:2003:i:3:p:455-468

DOI: 10.1016/S0378-4371(03)00070-0

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:324:y:2003:i:3:p:455-468