Role of the initial conditions on the enhancement of the escape time in static and fluctuating potentials
A Fiasconaro,
D Valenti and
B Spagnolo
Physica A: Statistical Mechanics and its Applications, 2003, vol. 325, issue 1, 136-143
Abstract:
We present a study of the noise driven escape of an overdamped Brownian particle moving in a cubic potential profile with a metastable state. We analyze the role of the initial conditions of the particle on the enhancement of the average escape time as a function of the noise intensity for fixed and fluctuating potentials. We observe the noise enhanced stability effect for all the initial unstable states investigated. For a fixed potential we find a peculiar initial condition xc which separates the set of the initial unstable states in two regions: those which give rise to divergences from those which show nonmonotonic behavior of the average escape time. For fluctuating potential at this particular initial condition and for low noise intensity we find large fluctuations of the average escape time.
Keywords: Statistical mechanics; Escape time; Noise enhanced stability; Metastable state (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103001924
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:325:y:2003:i:1:p:136-143
DOI: 10.1016/S0378-4371(03)00192-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().