First-order phase transitions: equivalence between bimodalities and the Yang–Lee theorem
Ph. Chomaz and
F. Gulminelli
Physica A: Statistical Mechanics and its Applications, 2003, vol. 330, issue 3, 451-458
Abstract:
First-order phase transitions in finite systems can be defined through the bimodality of the distribution of the order parameter. This definition is equivalent to the one based on the inverted curvature of the thermodynamic potential. Moreover we show that it is in a one-to-one correspondence with the Yang–Lee theorem in the thermodynamic limit. Bimodality is a necessary and sufficient condition for zeroes of the partition sum in the control intensive variable complex plane to be distributed on a line perpendicular to the real axis with a uniform density, scaling like the number of particles.
Keywords: Phase transitions; Finite systems; Negative heat capacity (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103007817
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:330:y:2003:i:3:p:451-458
DOI: 10.1016/j.physa.2003.01.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().