Consequences of coarse-grained Vlasov equations
Klaus Morawetz and
Rainer Walke
Physica A: Statistical Mechanics and its Applications, 2003, vol. 330, issue 3, 469-495
Abstract:
The Vlasov equation is analyzed for coarse-grained distributions resembling a finite width of test particles as used in numerical implementations. It is shown that this coarse-grained distribution obeys a kinetic equation similar to the Vlasov equation, but with additional terms. These terms give rise to entropy production indicating dissipative features due to a nonlinear mode coupling. The interchange of coarse graining and dynamical evolution is discussed with the help of an exactly solvable model for the self-consistent Vlasov equation and practical consequences are worked out. By calculating analytically the stationary solution of a general Vlasov equation we can show that a sum of modified Boltzmann-like distributions is approached dependent on the initial distribution. This behavior is independent of degeneracy and only controlled by the width of test particles. The condition for approaching a stationary solution is derived and it is found that the coarse graining energy given by the momentum width of test particles should be smaller than a quarter of the kinetic energy. Observable consequences of this coarse graining are: (i) spatial correlations in observables, (ii) too large radii of clusters or nuclei in self-consistent Thomas–Fermi treatments, (iii) a structure term in the response function resembling vertex correction correlations or internal structure effects and (iv) a modified centroid energy and higher damping width of collective modes.
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103005077
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:330:y:2003:i:3:p:469-495
DOI: 10.1016/S0378-4371(03)00507-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().