EconPapers    
Economics at your fingertips  
 

Derivation of the Onsager principle from large deviation theory

Brian R. La Cour and William C. Schieve

Physica A: Statistical Mechanics and its Applications, 2004, vol. 331, issue 1, 109-124

Abstract: The Onsager linear relations between macroscopic flows and thermodynamics forces are derived from the point of view of large deviation theory. For a given set of macroscopic variables, we consider the short-time evolution of near-equilibrium fluctuations, represented as the limit of finite-size conditional expectations. The resulting asymptotic conditional expectation is taken to represent the typical macrostate of the system and is used in place of the usual time-averaged macrostate of traditional approaches. By expanding in the short-time, near-equilibrium limit and equating the large deviation rate function with the thermodynamic entropy, a linear relation is obtained between the time rate of change of the macrostate and the conjugate initial macrostate. A Green–Kubo formula for the Onsager matrix is derived and shown to be positive semi-definite, while the Onsager reciprocity relations readily follow from time reversal invariance. Although the initial tendency of a macroscopic variable is to evolve towards equilibrium, we find that this evolution need not be monotonic. The example of an ideal Knundsen gas is considered as an illustration.

Keywords: Onsager relations; Large deviations; Reciprocity; Relaxation; Equilibrium (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103008021
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:331:y:2004:i:1:p:109-124

DOI: 10.1016/j.physa.2003.09.005

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:331:y:2004:i:1:p:109-124