Critical finite-size scaling of magnetization distribution function for Baxter–Wu model
S.S. Martinos,
A. Malakis and
I. Hadjiagapiou
Physica A: Statistical Mechanics and its Applications, 2004, vol. 331, issue 1, 182-188
Abstract:
The distribution function PL(m) of the order parameter for the Baxter–Wu model is studied using blocks of linear dimension L of a larger triangular lattice. At a given temperature, we use the Metropolis algorithm for the generation of a sample of configurations on the triangular lattice. The similarities and differences of this distribution with the usual cases of Ising lattices are investigated. We conclude that the present model obeys, at the critical temperature, a finite-scaling law with the known critical exponents as expected. However, our numerical data strongly indicate that the analytic form of the scaling function does not conform to the corresponding function for the usual Ising model. An analytic expression that gives a good fit is presented.
Keywords: Ising model; Triangular lattice; Baxter–Wu model (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103008355
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:331:y:2004:i:1:p:182-188
DOI: 10.1016/j.physa.2003.09.057
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().