Nonlinear characterization of rotating transient stochastic dynamics
J.I. Jiménez-Aquino and
M. Romero-Bastida
Physica A: Statistical Mechanics and its Applications, 2004, vol. 331, issue 3, 422-434
Abstract:
In this work we propose two theoretical schemes to characterize, through the mean passage time distribution, the nonlinear rotating transient stochastic dynamics: one is the quasi-deterministic approach valid for the long-time limit, and the other approach is valid for not so large times. The stochastic dynamics is represented by a rotating unstable Langevin-type dynamics in the presence of constant external force and is given in two x and y dynamical representations, such that y represents the transformed space of coordinates by means of a rotation matrix. The time characterization of the nonlinear system will be better described in the transformed space of coordinates y, because in this space the external force as well as the internal noise are rotational and the systematic force is derived from a potential. General and explicit results are obtained when we study those rotating systems of two variables. The theory is applied to detect weak and large optical signals in a rotating laser system as a prototype model.
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103008689
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:331:y:2004:i:3:p:422-434
DOI: 10.1016/j.physa.2003.09.031
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().