Jones polynomials and their zeros for a family of links
Xian'an Jin and
Fuji Zhang
Physica A: Statistical Mechanics and its Applications, 2004, vol. 333, issue C, 183-196
Abstract:
In this paper, we define a family of links which are similar to but more complex than Pretzel links. We compute the exact expressions of the Jones polynomials for this family of links. Motivated by the connection with the Potts model in statistical mechanics, we investigate accumulation points of zeros of the Jones polynomials for some subfamilies.
Keywords: Zeros distribution; Jones polynomial; Potts model; Kauffman bracket; Writhe; Chain graph; Chain polynomial (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103010173
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:333:y:2004:i:c:p:183-196
DOI: 10.1016/j.physa.2003.10.085
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().