Research on the fractal structure in the Chinese stock market
Xin-tian Zhuang,
Xiao-yuan Huang and
Yan-li Sha
Physica A: Statistical Mechanics and its Applications, 2004, vol. 333, issue C, 293-305
Abstract:
Applying fractal theory, this paper probes and discusses self-similarity and scale invariance of the Chinese stock market. It analyses three kinds of scale indexes, i.e., autocorrelation index, Hurst index and the scale index on the basis of detrended fluctuation analysis (DFA) algorithm and promotes DFA into a recursive algorithm. Using the three kinds of scale indexes, we conduct empirical research on the Chinese Shanghai and Shenzhen stock markets. The results indicate that the rate of returns of the two stock markets does not obey the normal distribution. A correlation exists between the stock price indexes over time scales. The stock price indexes exhibit fractal time series. It indicates that the policy guide hidden at the back influences the characteristic of the Chinese stock market.
Keywords: Stock market; Complexity; Fractal; Self-similarity; Scaling; Scale index; DFA (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103009853
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:333:y:2004:i:c:p:293-305
DOI: 10.1016/j.physa.2003.10.061
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().