Generative modelling of regulated dynamical behavior in cultured neuronal networks
Vladislav Volman,
Itay Baruchi,
Erez Persi and
Eshel Ben-Jacob
Physica A: Statistical Mechanics and its Applications, 2004, vol. 335, issue 1, 249-278
Abstract:
The spontaneous activity of cultured in vitro neuronal networks exhibits rich dynamical behavior. Despite the artificial manner of their construction, the networks’ activity includes features which seemingly reflect the action of underlying regulating mechanism rather than arbitrary causes and effects. Here, we study the cultured networks dynamical behavior utilizing a generative modelling approach. The idea is to include the minimal required generic mechanisms to capture the non-autonomous features of the behavior, which can be reproduced by computer modelling, and then, to identify the additional features of biotic regulation in the observed behavior which are beyond the scope of the model. Our model neurons are composed of soma described by the two Morris–Lecar dynamical variables (voltage and fraction of open potassium channels), with dynamical synapses described by the Tsodyks–Markram three variables dynamics. The model neuron satisfies our self-consistency test: when fed with data recorded from a real cultured networks, it exhibits dynamical behavior very close to that of the networks’ “representative” neuron. Specifically, it shows similar statistical scaling properties (approximated by similar symmetric Lévy distribution with finite mean). A network of such M–L elements spontaneously generates (when weak “structured noise” is added) synchronized bursting events (SBEs) similar to the observed ones. Both the neuronal statistical scaling properties within the bursts and the properties of the SBEs time series show generative (a new discussed concept) agreement with the recorded data. Yet, the model network exhibits different structure of temporal variations and does not recover the observed hierarchical temporal ordering, unless fed with recorded special neurons (with much higher rates of activity), thus indicating the existence of self-regulation mechanisms. It also implies that the spontaneous activity is not simply noise-induced. Instead, the network seems to possess excitable media like abilities, presumably provided by the underlying glia fabric.
Keywords: Generic modelling; Dynamical systems; Control and regulation (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103011154
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:335:y:2004:i:1:p:249-278
DOI: 10.1016/j.physa.2003.11.015
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().