Biologically inspired learning in a layered neural net
J. Bedaux and
W.A. van Leeuwen
Physica A: Statistical Mechanics and its Applications, 2004, vol. 335, issue 1, 279-299
Abstract:
A feed-forward neural net with adaptable synaptic weights and fixed, zero or non-zero threshold potentials is studied, in the presence of a global feedback signal that can only have two values, depending on whether the output of the network in reaction to its input is right or wrong.
Keywords: Neural network; Local learning; Hebbian learning; Activity control; Dilution; Threshold potential (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103011762
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:335:y:2004:i:1:p:279-299
DOI: 10.1016/j.physa.2003.12.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().