EconPapers    
Economics at your fingertips  
 

Random matrix theory for portfolio optimization: a stability approach

S. Sharifi, M. Crane, A. Shamaie and H. Ruskin

Physica A: Statistical Mechanics and its Applications, 2004, vol. 335, issue 3, 629-643

Abstract: We apply random matrix theory (RMT) to an empirically measured financial correlation matrix, C, and show that this matrix contains a large amount of noise. In order to determine the sensitivity of the spectral properties of a random matrix to noise, we simulate a set of data and add different volumes of random noise. Having ascertained that the eigenspectrum is independent of the standard deviation of added noise, we use RMT to determine the noise percentage in a correlation matrix based on real data from S&P500. Eigenvalue and eigenvector analyses are applied and the experimental results for each of them are presented to identify qualitatively and quantitatively different spectral properties of the empirical correlation matrix to a random counterpart. Finally, we attempt to separate the noisy part from the non-noisy part of C. We apply an existing technique to cleaning C and then discuss its associated problems. We propose a technique of filtering C that has many advantages, from the stability point of view, over the existing method of cleaning.

Keywords: Random matrix theory; Portfolio optimization; Correlation matrix; Eigenvalues and eigenvectors (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437103011841
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:335:y:2004:i:3:p:629-643

DOI: 10.1016/j.physa.2003.12.016

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:335:y:2004:i:3:p:629-643