Dimension of the minimal cover and fractal analysis of time series
M.m Dubovikov,
N.v Starchenko and
M.s Dubovikov
Physica A: Statistical Mechanics and its Applications, 2004, vol. 339, issue 3, 591-608
Abstract:
We develop a new approach to the fractal analysis of time series of various natural, technological and social processes. To compute the fractal dimension, we introduce the sequence of the minimal covers associated with a decreasing scale δ. This results in new fractal characteristics: the dimension of minimal covers Dμ, the variation index μ related to Dμ, and the new multifractal spectrum ζ(q) defined on the basis of μ. Numerical computations performed for the financial series of companies entering Dow Jones Industrial Index show that the minimal scale τμ, which is necessary for determining μ with an acceptable accuracy, is almost two orders smaller than an analogous scale for the Hurst index H. This allows us to consider μ as a local fractal characteristic. The presented fractal analysis of the financial series shows that μ(t) is related to the stability of underlying processes. The results are interpreted in terms of the feedback.
Keywords: Time series; Fractal analysis; Scaling; Multifractals; Stock price; Feedback (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104003061
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:339:y:2004:i:3:p:591-608
DOI: 10.1016/j.physa.2004.03.025
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().