Generalized thermostatistics based on deformed exponential and logarithmic functions
Jan Naudts
Physica A: Statistical Mechanics and its Applications, 2004, vol. 340, issue 1, 32-40
Abstract:
The equipartition theorem states that inverse temperature equals the log-derivative of the density of states. This relation can be generalized by introducing a proportionality factor involving an increasing positive function φ(x). It is shown that this assumption leads to an equilibrium distribution of the Boltzmann–Gibbs form with the exponential function replaced by a deformed exponential function. In this way one obtains a formalism of generalized thermostatistics introduced previously by the author. It is shown that Tsallis’ thermostatistics, with a slight modification, is the most obvious example of this formalism and corresponds with the choice φ(x)=xq.
Keywords: Generalized thermostatistics; Equipartition theorem; Density of states; Deformed logarithmic and exponential functions; Tsallis’ thermostatistics; Duality (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104003942
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:340:y:2004:i:1:p:32-40
DOI: 10.1016/j.physa.2004.03.074
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().