On self-organised criticality in one dimension
Kim Christensen
Physica A: Statistical Mechanics and its Applications, 2004, vol. 340, issue 4, 527-534
Abstract:
In critical phenomena, many of the characteristic features encountered in higher dimensions such as scaling, data collapse and associated critical exponents are also present in one dimension. Likewise for systems displaying self-organised criticality. We show that the one-dimensional Bak–Tang–Wiesenfeld sandpile model, although trivial, does indeed fall into the general framework of self-organised criticality. We also investigate the Oslo ricepile model, driven by adding slope units at the boundary or in the bulk. We determine the critical exponents by measuring the scaling of the kth moment of the avalanche size probability with system size. The avalanche size exponent depends on the type of drive but the avalanche dimension remains constant.
Keywords: Self-organised criticality; Critical exponents; Data collapse (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710400559X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:340:y:2004:i:4:p:527-534
DOI: 10.1016/j.physa.2004.05.002
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().