Chapman–Enskog derivation of the generalized Smoluchowski equation
Pierre-Henri Chavanis,
Philippe Laurençot and
Mohammed Lemou
Physica A: Statistical Mechanics and its Applications, 2004, vol. 341, issue C, 145-164
Abstract:
We use the Chapman–Enskog method to derive the Smoluchowski equation from the Kramers equation in a high friction limit. We consider two main extensions of this problem: we take into account a uniform rotation of the background medium and we consider a generalized class of Kramers equations associated with generalized free energy functionals. We mention applications of these results to systems with long-range interactions (self-gravitating systems, 2D vortices, bacterial populations, etc.). In that case, the Smoluchowski equation is non-local. In the limit of short-range interactions, it reduces to a generalized form of the Cahn–Hilliard equation. These equations are associated with an effective generalized thermodynamical formalism.
Keywords: Kinetic theory; Generalized thermodynamics; Generalized Fokker–Planck equations (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104004649
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:341:y:2004:i:c:p:145-164
DOI: 10.1016/j.physa.2004.04.102
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().