Statistical analysis of gene and intergenic DNA sequences
D. Kugiumtzis and
A. Provata
Physica A: Statistical Mechanics and its Applications, 2004, vol. 342, issue 3, 623-638
Abstract:
Much of the on-going statistical analysis of DNA sequences is focused on the estimation of characteristics of coding and non-coding regions that would possibly allow discrimination of these regions. In the current approach, we concentrate specifically on genes and intergenic regions. To estimate the level and type of correlation in these regions we apply various statistical methods inspired from nonlinear time series analysis, namely the probability distribution of tuplets, the Mutual Information and the Identical Neighbour Fit. The methods are suitably modified to work on symbolic sequences and they are first tested for validity on sequences obtained from well-known simple deterministic and stochastic models. Then they are applied to the DNA sequence of chromosome 1 of arabidopsis thaliana. The results suggest that correlations do exist in the DNA sequence but they are weak and that intergenic sequences tend to be more correlated than gene sequences. The use of statistical tests with surrogate data establish these findings in a rigorous statistical manner.
Keywords: Long-range correlations; DNA sequence; Genes; Intergenic regions; Nonlinear analysis of time series; Surrogate data test (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104006405
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:342:y:2004:i:3:p:623-638
DOI: 10.1016/j.physa.2004.05.070
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().