Population growth and control in stochastic models of cancer development
Anna Ochab-Marcinek and
Ewa Gudowska-Nowak
Physica A: Statistical Mechanics and its Applications, 2004, vol. 343, issue C, 557-572
Abstract:
We study the joint effect of thermal bath fluctuations and an external noise tuning activity of cytotoxic cells on the triggered immune response in a growing cancerous tissue. The immune response is assumed to be primarily mediated by effector cells that develop a cytotoxic activity against the abnormal tissue. The kinetics of such a reaction is represented by an enzymatic-like Michaelis–Menten two step process. Effective free-energy surface for the process is further parameterised by the fluctuating energy barrier between the states of high and low concentration of cancerous cells. By analysing the far from equilibrium escape problem across the fluctuating potential barrier, we determine conditions of the most efficient decay kinetics of the cancer cell-population in the presence of dichotomously fluctuating concentration of cytotoxic cells.
Keywords: Models of population growth; Noise-driven activation (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104008714
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:343:y:2004:i:c:p:557-572
DOI: 10.1016/j.physa.2004.06.071
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().