ARCH–GARCH approaches to modeling high-frequency financial data
Boris Podobnik,
Plamen Ch. Ivanov,
Ivo Grosse,
Kaushik Matia and
H. Eugene Stanley
Physica A: Statistical Mechanics and its Applications, 2004, vol. 344, issue 1, 216-220
Abstract:
We model the power-law stability in distribution of returns for S&P500 index by the GARCH process which we use to account for the long memory in the variance correlations. Precisely, we analyze the distributions corresponding to temporal aggregation of the GARCH process, i.e., the sum of n GARCH variables. The stability in the power-law tails is controlled by the GARCH parameters. We model the crossover behavior in magnitude correlations of returns by the so-called two-FIARCH process. Besides detrended fluctuation analysis, we employ the method proposed by Geweke and Porter-Hudak to estimate the fractional parameter in magnitude correlations.
Keywords: Stochastic processes; Random walks (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104009380
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:344:y:2004:i:1:p:216-220
DOI: 10.1016/j.physa.2004.06.120
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().