Short-time dynamics of isotropic and anisotropic Bak–Sneppen model: extensive simulation results
Ugur Tirnakli and
Marcelo L. Lyra
Physica A: Statistical Mechanics and its Applications, 2004, vol. 344, issue 3, 712-717
Abstract:
In this work, the short-time dynamics of the isotropic and anisotropic versions of the Bak–Sneppen (BS) model has been investigated using the standard damage spreading technique. Since the system sizes attained in our simulations are larger than the ones employed in previous studies, our results for the dynamic scaling exponents are expected to be more accurate than the results of the existing literature. The obtained scaling exponents of both versions of the BS model are found to be greater than the ones given in previous works. These findings are in agreement with the recent claim of Cafiero et al. (Eur. Phys. J. B7 (1999) 505). Moreover, it is found that the short-time dynamics of the anisotropic model is only slightly affected by finite-size effects and the reported estimate of α≃0.53 can be considered as a good estimate of the true exponent in the thermodynamic limit.
Keywords: Critical dynamics; Bak–Sneppen model (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104008180
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:344:y:2004:i:3:p:712-717
DOI: 10.1016/j.physa.2004.06.053
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().