EconPapers    
Economics at your fingertips  
 

Complexity vs. stability in small-world networks

Sitabhra Sinha

Physica A: Statistical Mechanics and its Applications, 2005, vol. 346, issue 1, 147-153

Abstract: According to the May–Wigner stability theorem, increasing the complexity of a network inevitably leads to its destabilization, such that a small perturbation will be able to disrupt the entire system. One of the principal arguments against this observation is that it is valid only for random networks, and therefore does not apply to real-world networks, which presumably are structured. Here, we examine how the introduction of small-world topological structure into networks affects their stability. Our results indicate that, in structured networks, the parameter values at which the stability–instability transition occurs with increasing complexity is identical to that predicted by the May–Wigner criteria. However, the nature of the transition, as measured by the finite-size scaling exponent, appears to change as the network topology transforms from regular to random, with the small-world regime as the cross-over region. This behavior is related to the localization of the largest eigenvalues along the real axis in the eigenvalue plain with increasing regularity in the network.

Keywords: Small-world networks; Diversity-stability debate; May–Wigner stability theorem (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104011732
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:346:y:2005:i:1:p:147-153

DOI: 10.1016/j.physa.2004.08.062

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:phsmap:v:346:y:2005:i:1:p:147-153