A refined fuzzy time-series model for forecasting
Hui-Kuang Yu
Physica A: Statistical Mechanics and its Applications, 2005, vol. 346, issue 3, 657-681
Abstract:
Fuzzy time-series models have been used to model observations, where each one of them contains multiple values. The formulation of fuzzy relationships and the lengths of intervals are considered to be two of the critical factors that affect forecasting results. Unfortunately, the lengths of the intervals were determined during the early stages of forecasting in these models, and they thus often failed to reflect the distribution of observations. This study therefore proposes a refined fuzzy time-series model to further refine the lengths of intervals. This model can refine the lengths of intervals during the formulation of fuzzy relationships, and hence capture the fuzzy relationships more appropriately. As a result, the forecasting results can be improved. Both the stock index and enrollment are used as the targets in the empirical analysis.
Keywords: Enrollment; Fuzzy relationships; Lengths of intervals; Stock index (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104009951
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:346:y:2005:i:3:p:657-681
DOI: 10.1016/j.physa.2004.07.024
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().