Debye–Hückel theory for two-dimensional Coulomb systems living on a finite surface without boundaries
Gabriel Téllez
Physica A: Statistical Mechanics and its Applications, 2005, vol. 349, issue 1, 155-171
Abstract:
We study the statistical mechanics of a multicomponent two-dimensional Coulomb gas which lives on a finite surface without boundaries. We formulate the Debye–Hückel theory for such systems, which describes the low-coupling regime. There are several problems, which we address, to properly formulate the Debye–Hückel theory. These problems are related to the fact that the electric potential of a single charge cannot be defined on a finite surface without boundaries. One can only properly define the Coulomb potential created by a globally neutral system of charges. As an application of our formulation, we study, in the Debye–Hückel regime, the thermodynamics of a Coulomb gas living on a sphere of radius R. We find, in this example, that the grand potential (times the inverse temperature) has a universal finite-size correction 13lnR. We show that this result is more general: for any arbitrary finite geometry without boundaries, the grand potential has a finite-size correction (χ/6)lnR, with χ the Euler characteristic of the surface and R2 its area.
Keywords: Two-dimensional Coulomb gas; Debye–Hückel theory; Sphere (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104013275
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:349:y:2005:i:1:p:155-171
DOI: 10.1016/j.physa.2004.10.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().