Sandpiles on Watts–Strogatz type small-worlds
Jani Lahtinen,
János Kertész and
Kimmo Kaski
Physica A: Statistical Mechanics and its Applications, 2005, vol. 349, issue 3, 535-547
Abstract:
We study a one-dimensional sandpile model in small-world networks with long-range links either by introducing them randomly to fixed connection topology (quenched randomness) or to temporary connection topology (annealed randomness) between cells to allow a grain to topple from a cell to a neighbouring or distant cell. These models are investigated both analytically and by computer simulations, and they show self-organized criticality unlike the original one-dimensional sandpile model. The simulations also show that the distribution of avalanche size undergoes a transition from a non-critical to a critical regime. In addition we have found that for annealed and quenched randomness there is a scaling for the size-distribution of avalanches with a single power-law exponent, which is the same as that found for the standard sandpile model in higher dimensions. We also show that the average number of grains in the system follows power-law behaviour as a function of the probability of long-range links with different exponents for the annealed and quenched systems.
Keywords: Self-organized criticality; Small-world networks; Scaling laws (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104013603
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:349:y:2005:i:3:p:535-547
DOI: 10.1016/j.physa.2004.10.024
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().