Derivation of a Fokker–Planck equation for generalized Langevin dynamics
Sharon Khan and
Andy M. Reynolds
Physica A: Statistical Mechanics and its Applications, 2005, vol. 350, issue 2, 183-188
Abstract:
A Fokker–Planck equation describing the statistical properties of Brownian particles acted upon by long-range stochastic forces with power-law correlations is derived. In contrast with previous approaches (Wang, Phys. Rev. A 45 (1992) 2), it is shown that the distribution of Brownian particles after release from a point source is broader than Gaussian and described by a Fox function. Transport is shown to be ballistic at short times and either sub-diffusive or super-diffusive at large times. The imposition of occasional trapping events onto the Brownian dynamics can result in confined diffusion (d/dt〈x2〉→0) at long times when the mean trapping time is divergent. It is suggested that such dynamics describe protein motions in cell membranes.
Keywords: Brownian; Langevin; Fokker–Planck; Fractional calculus (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104016255
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:350:y:2005:i:2:p:183-188
DOI: 10.1016/j.physa.2004.11.067
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().