Advection and dispersion in time and space
B. Baeumer,
D.A. Benson and
M.M. Meerschaert
Physica A: Statistical Mechanics and its Applications, 2005, vol. 350, issue 2, 245-262
Abstract:
Previous work showed how moving particles that rest along their trajectory lead to time-nonlocal advection–dispersion equations. If the waiting times have infinite mean, the model equation contains a fractional time derivative of order between 0 and 1. In this article, we develop a new advection–dispersion equation with an additional fractional time derivative of order between 1 and 2. Solutions to the equation are obtained by subordination. The form of the time derivative is related to the probability distribution of particle waiting times and the subordinator is given as the first passage time density of the waiting time process which is computed explicitly.
Keywords: Anomalous diffusion; Continuous time random walks; First passage time; Fractional calculus; Subdiffusion; Power laws (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104014141
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:350:y:2005:i:2:p:245-262
DOI: 10.1016/j.physa.2004.11.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().