EconPapers    
Economics at your fingertips  
 

Mass transport theory for the Toda lattices, dispersive and dissipative

Zene Horii

Physica A: Statistical Mechanics and its Applications, 2005, vol. 350, issue 2, 349-378

Abstract: To establish mass transport theory on nonlinear lattices, we formulate the Korteweg–deVries (KdV) equation and the Burgers equation using the flow variable representation so as to facilitate comparison with the Boltzmann equation and with the Cahn–Hilliard equation in classical statistical mechanics. We also study Toda lattice microdynamics using the Flaschka representation, and compare with the Liouville equation. Like the linear diffusion equation, the Boltzmann equation and the Liouville equation are to be solved for a distribution function, which is intrinsically probabilistic. Transport theory in linear systems is governed by the isotropic motions of the kinetic equations. In contrast, the KdV perturbation equation derived from the Toda lattice microdynamics expresses hydrodynamic mass transport. The KdV equation in hydrodynamics and the Burgers equation in thermodynamics do not involve a probability distribution function. The nonlinear lattices do not retain isotropy of the mass transport equations. In consequence, it is proposed that in the presence of hydrodynamic flows to the left, KdV wave propagation proceeds to the right. This basic property of the KdV system is extended to thermodynamics in the Burgers system. These features arise because linear systems are driven towards an equilibrium by molecular collisions, whereas the inhomogeneities of the nonlinear lattices are generated by the potential energy of interaction. Diffusion as expressed by the Burgers equation is governed not only by a chemical potential, but also by the Toda lattice potential energy.

Keywords: Mass transport; Flow variable representation; Toda lattice; KdV perturbation equation; Saitoh transforms; Thermodynamic flows; Broken isotropy (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710401427X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:350:y:2005:i:2:p:349-378

DOI: 10.1016/j.physa.2004.10.041

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:350:y:2005:i:2:p:349-378