Fluctuation and transition of vehicular traffic through a sequence of traffic lights
Takashi Nagatani
Physica A: Statistical Mechanics and its Applications, 2005, vol. 350, issue 2, 577-587
Abstract:
We study the dynamical behavior of N vehicles with no passing, but are moving through a sequence of traffic lights on a single-lane highway, where the traffic lights turn on and off periodically with the synchronized strategy. The dynamical model of N vehicles controlled by traffic lights is described in terms of coupled maps with three parameters. The motions of vehicles display a complex behavior, interacting with other vehicles through the sequence of traffic lights. Fluctuation of the leading vehicle is amplified to the following vehicles. The amplification of fluctuation changes with cycle time. The dynamical behavior of vehicles depends highly on their position of grouping vehicles. Signal traffic at a low density changes at specific values of cycle time. The complex dynamical transitions occur by varying three parameters.
Keywords: Traffic; Nonlinear map; Dynamical transition; Fluctuation (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104014256
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:350:y:2005:i:2:p:577-587
DOI: 10.1016/j.physa.2004.11.018
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().