Synchronization of self-sustained oscillators by common white noise
D.S. Goldobin and
A.S. Pikovsky
Physica A: Statistical Mechanics and its Applications, 2005, vol. 351, issue 1, 126-132
Abstract:
We study the stability of self-sustained oscillations under the influence of external noise. For small-noise amplitude a phase approximation for the Langevin dynamics is valid. A stationary distribution of the phase is used for an analytic calculation of the maximal Lyapunov exponent. We demonstrate that for small noise the exponent is negative, which corresponds to synchronization of oscillators.
Keywords: Noise; Synchronization; Lyapunov exponent (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104015572
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:351:y:2005:i:1:p:126-132
DOI: 10.1016/j.physa.2004.12.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().