A random walker on a ratchet
José L. Mateos
Physica A: Statistical Mechanics and its Applications, 2005, vol. 351, issue 1, 79-87
Abstract:
We analyze a model for a walker moving on a ratchet potential. This model is motivated by the properties of transport of motor proteins, like kinesin and myosin. The walker consists of two feet that are represented as two particles coupled nonlinearly through a bistable potential. In contrast to linear coupling, the bistable potential admits a richer dynamics, where the ordering of the particles can alternate during the walking. The transitions between the two stable states on the bistable potential correspond to a walking with alternating particles. We distinguish between two main walking styles: alternating and no alternating, resembling the hand-over-hand and the inchworm walking in motor proteins, respectively. When the equilibrium distance between the two particles divided by the periodicity of the ratchet is an integer, we obtain a maximum for the current, indicating optimal transport.
Keywords: Noise; Transport; Brownian motors; Ratchets (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437104015523
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:351:y:2005:i:1:p:79-87
DOI: 10.1016/j.physa.2004.12.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().