Exact oblique boundary–boundary correlation functions of the two-dimensional ising model
Hidenori Suzuki and
Masuo Suzuki
Physica A: Statistical Mechanics and its Applications, 2005, vol. 353, issue C, 309-322
Abstract:
The boundary–boundary correlation in an arbitrary oblique direction for the two-dimensional Ising model is calculated exactly using the topological interaction method. It is shown that these correlation functions satisfy Morita's sum rule not only for T>Tc but also for T⩽Tc. The asymptotic form of the oblique boundary–boundary correlation functions is derived. Non-monotonic behaviour of the oblique boundary–boundary correlation functions with respect to the system-size is found by using numerical calculations of an exact integral representation of the oblique correlation.
Keywords: Critical phenomena; Spontaneous symmetry braking; Boundary effect; Ising model; Exact formula (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105001111
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:353:y:2005:i:c:p:309-322
DOI: 10.1016/j.physa.2005.02.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().