EconPapers    
Economics at your fingertips  
 

Time and foreign exchange markets

Luca Berardi and Maurizio Serva

Physica A: Statistical Mechanics and its Applications, 2005, vol. 353, issue C, 403-412

Abstract: The definition of time is still an open question when one deals with high-frequency time series. If time is simply the calendar time, prices can be modeled as continuous random processes and values resulting from transactions or given quotes are discrete samples of this underlying dynamics. On the contrary, if one takes the business time point of view, price dynamics is a discrete random process, and time is simply the ordering according to which prices are quoted in the market. In this paper, we suggest that the business time approach is perhaps a better way of modeling price dynamics than calendar time. This conclusion comes from testing probability densities and conditional variances predicted by the two models against the experimental ones. The data set we use contains the DEM/USD exchange quotes provided to us by Olsen & Associates during a period of one year from January to December 1998. In this period, 1,620,843 quotes entries in the EFX system were recorded.

Keywords: Forex markets; Time; Lags; High frequency (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105000889
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:353:y:2005:i:c:p:403-412

DOI: 10.1016/j.physa.2005.01.049

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:353:y:2005:i:c:p:403-412