The reversible phase transition of DNA-linked colloidal gold assemblies
Young Sun,
Nolan C. Harris and
Ching-Hwa Kiang
Physica A: Statistical Mechanics and its Applications, 2005, vol. 354, issue C, 1-9
Abstract:
We present direct evidence for a reversible phase transition of DNA-linked colloidal gold assemblies. Transmission electron microscopy and optical absorption spectroscopy are used to monitor the colloidal gold phase transition, whose behavior is dominated by DNA interactions. We use single-stranded DNA-capped colloidal gold that is linked by complementary linker DNA to form the assemblies. We found that, compared to free DNA, a sharp melting transition is observed for the DNA-linked colloidal gold assemblies. The structure of the assemblies is non-crystalline, much like a gel phase, consistent with theoretical predictions. Optical spectra and melting curves provide additional evidence of gelation of the colloidal system. The phase transition and separation are examples of percolation in a dilute solvent.
Keywords: DNA phase transition; Gold nanoparticle; DNA melting (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105001949
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:354:y:2005:i:c:p:1-9
DOI: 10.1016/j.physa.2005.02.037
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().