Steady quasi-homogeneous granular gas state
Patricio Cordero,
Dino Risso and
Rodrigo Soto
Physica A: Statistical Mechanics and its Applications, 2005, vol. 356, issue 1, 54-60
Abstract:
Using Newtonian molecular dynamics we study a gas of inelastic hard disks subject to shear between two planar parallel thermal walls. The system behaves like a Couette flow and it is tuned to produce a steady state that ideally has uniform temperature, uniform density, no energy flux and a linear velocity profile for restitution coefficient in the wide range: 0.3⩽r⩽1. It is shown that Navier–Stokes-like hydrodynamics fails far from the quasielastic regime. The system shows significant non-Newtonian behavior as non linear viscosity, shear thinning and normal stress differences. Our theoretical description of this state, based on generalized hydrodynamic equations derived from a moment expansion of Boltzmann's equation, agrees reasonably well with the simulational results, and captures the non-Newtonian features of the system. We claim that our hydrodynamic equations constitute a general formalism appropriate for describing different regimes of granular gases.
Keywords: Granular matter; Kinetic theory (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105004541
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:356:y:2005:i:1:p:54-60
DOI: 10.1016/j.physa.2005.05.012
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().