Wigner function for discrete phase space: Exorcising ghost images
Arturo Argüelles and
Thomas Dittrich
Physica A: Statistical Mechanics and its Applications, 2005, vol. 356, issue 1, 72-77
Abstract:
We construct, using simple geometrical arguments, a Wigner function defined on a discrete phase space of arbitrary integer Hilbert-space dimension that is free of redundancies. “Ghost images” plaguing other Wigner functions for discrete phase spaces are thus revealed as artifacts. It allows to devise a corresponding phase-space propagator in an unambiguous manner. We apply our definitions to eigenstates and propagator of the quantum baker map. Scars on unstable periodic points of the corresponding classical map become visible with unprecedented resolution.
Keywords: Wigner function; Finite Hilbert-space dimension; Toroidal phase space; Propagator; Scars; Quantum baker map (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105004577
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:356:y:2005:i:1:p:72-77
DOI: 10.1016/j.physa.2005.05.015
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().