EconPapers    
Economics at your fingertips  
 

Line tension on approach to a wetting transition

C.M. Taylor and B. Widom

Physica A: Statistical Mechanics and its Applications, 2005, vol. 358, issue 2, 492-504

Abstract: The region of three-phase contact of a binary fluid system described by a model free energy functional is studied using a mean-field density-functional approach. A first order wetting transition is induced by varying a parameter that is the controlling field variable in the model. The surface tensions of the constituent two-phase interfaces are evaluated for a range of parameter values and used to locate the wetting transition. The behavior of the line tension upon approach to the wetting transition is then determined by numerical solution of the Euler–Lagrange equations for the full three-phase system at each value of the parameter. The line tension is found to converge to a finite value as the contact angle vanishes, with a derivative that is finite with respect to contact angle but divergent with respect to the field variable (parameter), apparently growing as the inverse square root of the difference between the field variable and its value at wetting. Except for a possible logarithmic factor, which could not be discerned at the present level of numerical precision, this would be in accord with the prediction from mean-field theory.

Keywords: Line tension; Wetting transition; Mean-field density-functional theory (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105003559
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:358:y:2005:i:2:p:492-504

DOI: 10.1016/j.physa.2005.03.043

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:358:y:2005:i:2:p:492-504