Markov chains theory for scale-free networks
Qinghua Chen and
Dinghua Shi
Physica A: Statistical Mechanics and its Applications, 2006, vol. 360, issue 1, 121-133
Abstract:
This paper proposes a Markov chain method to predict the growth dynamics of the individual nodes in scale-free networks, and uses this to calculate numerically the degree distribution. We first find that the degree evolution of a node in the BA model is a nonhomogeneous Markov chain. An efficient algorithm to calculate the degree distribution is developed by the theory of Markov chains. The numerical results for the BA model are consistent with those of the analytical approach. A directed network with the logarithmic growth is introduced. The algorithm is applied to calculate the degree distribution for the model. The numerical results show that the system self-organizes into a scale-free network.
Keywords: Scale-free networks; Degree distribution; Degree exponent; Markov chains (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105004346
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:360:y:2006:i:1:p:121-133
DOI: 10.1016/j.physa.2005.04.030
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().