Microcanonical foundation of nonextensivity and generalized thermostatistics based on the fractality of the phase space
Vladimir García-Morales and
Julio Pellicer
Physica A: Statistical Mechanics and its Applications, 2006, vol. 361, issue 1, 161-172
Abstract:
We develop a generalized theory of (meta)equilibrium statistical mechanics in the thermodynamic limit valid for both smooth and fractal phase spaces. In the former case, our approach leads naturally to Boltzmann–Gibbs standard thermostatistics while, in the latter, Tsallis thermostatistics is straightforwardly obtained as the most appropriate formalism. We first focus on the microcanonical ensemble stressing the importance of the limit t→∞ on the form of the microcanonical measure. Interestingly, this approach leads to interpret the entropic index q as the box-counting dimension of the (microcanonical) phase space when fractality is considered.
Keywords: Thermodynamics; Statistical mechanics (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105007442
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:361:y:2006:i:1:p:161-172
DOI: 10.1016/j.physa.2005.07.006
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().