Hamiltonian and Brownian systems with long-range interactions: I Statistical equilibrium states and correlation functions
Pierre-Henri Chavanis
Physica A: Statistical Mechanics and its Applications, 2006, vol. 361, issue 1, 55-80
Abstract:
We discuss the equilibrium statistical mechanics of systems with long-range interactions. We contrast the microcanonical description of an isolated Hamiltonian system from the canonical description of a stochastically forced Brownian system. We show that the mean-field approximation is exact in a proper thermodynamic limit N→+∞. The one-point equilibrium distribution function is solution of an integrodifferential equation obtained from a static BBGKY-like hierarchy. It also optimizes a thermodynamical potential (entropy or free energy) under appropriate constraints. In the case of attractive potentials of interaction, we show the existence of a critical temperature Tc separating a homogeneous phase (T⩾Tc) from a clustered phase (T⩽Tc). The homogeneous phase becomes unstable for TKeywords: Long-range interactions; Mean-field theory; Hamiltonian systems; Brownian systems (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105007156
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:361:y:2006:i:1:p:55-80
DOI: 10.1016/j.physa.2005.06.087
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().