Dispersion and scaling of fluctuating vehicles through a sequence of traffic lights
Takashi Nagatani
Physica A: Statistical Mechanics and its Applications, 2006, vol. 361, issue 2, 619-629
Abstract:
We study the dynamical behavior of vehicles moving with fluctuating speed through a sequence of traffic lights which are controlled by the synchronized strategy. The dynamics of fluctuating vehicular traffic controlled by traffic lights is described in terms of the stochastic nonlinear map. We study two kinds of traffic: case (A) in which vehicles are allowed to pass other vehicles freely and case (B) in which vehicles are inhibited to pass other vehicles. Vehicles move together (without dispersion) for specific values of cycle time, while vehicles extend over the road for other values of cycle time. Then, vehicular traffic exhibits the dispersion. When the dispersion of vehicles occurs, the variance of arrival time shows the scaling behavior. The scaling properties are derived. The scaling form and exponents are discussed by comparing with those of dynamic scaling of rough surface.
Keywords: Traffic; Scaling; Dispersion; Bunching; Nonlinear map; Randomness (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710500693X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:361:y:2006:i:2:p:619-629
DOI: 10.1016/j.physa.2005.06.060
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().