Bipartite producer–consumer networks and the size distribution of firms
Wang Dahui,
Zhou Li and
Di Zengru
Physica A: Statistical Mechanics and its Applications, 2006, vol. 363, issue 2, 359-366
Abstract:
A bipartite producer–consumer network is constructed to describe the industrial structure. The edges from consumer to producer represent the choices of the consumer for the final products and the degree of producer can represent its market share. So the size distribution of firms can be characterized by producer's degree distribution. The probability for a producer receiving a new consumption is determined by its competency described by initial attractiveness and the self-reinforcing mechanism in the competition described by preferential attachment. The cases with constant total consumption and with growing market are studied. The following results are obtained: (1) Without market growth and a uniform initial attractiveness a, the final distribution of firm sizes is Gamma distribution for a>1 and is exponential for a=1. If a<1, the distribution is power in small size and exponential in upper tail. (2) For a growing market, the size distribution of firms obeys the power-law. The exponent is affected by the market growth and the initial attractiveness of the firms.
Keywords: Size distribution of firms; Bipartite networks; Complex networks; Econophysics (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105008319
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:363:y:2006:i:2:p:359-366
DOI: 10.1016/j.physa.2005.08.006
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().