A deterministic small-world network created by edge iterations
Zhongzhi Zhang,
Lili Rong and
Chonghui Guo
Physica A: Statistical Mechanics and its Applications, 2006, vol. 363, issue 2, 567-572
Abstract:
Small-world networks are ubiquitous in real-life systems. Most previous models of small-world networks are stochastic. The randomness makes it more difficult to gain a visual understanding on how do different nodes of networks interact with each other and is not appropriate for communication networks that have fixed interconnections. Here we present a model that generates a small-world network in a simple deterministic way. Our model has a discrete exponential degree distribution. We solve the main characteristics of the model.
Keywords: Small-world networks; Disordered systems; Exponential scaling (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105008538
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:363:y:2006:i:2:p:567-572
DOI: 10.1016/j.physa.2005.08.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().