EconPapers    
Economics at your fingertips  
 

Identification of lethal cluster of genes in the yeast transcription network

K. Rho, H. Jeong and B. Kahng

Physica A: Statistical Mechanics and its Applications, 2006, vol. 364, issue C, 557-564

Abstract: Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We construct a gene transcription network based on the microarray expression level. Links are added one by one in the descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that the lethal cluster has the largest mean degree.

Keywords: Transcription network; Lethal genes; Percolation (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105010253
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:364:y:2006:i:c:p:557-564

DOI: 10.1016/j.physa.2005.08.086

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:364:y:2006:i:c:p:557-564